Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain.

نویسندگان

  • Tatjana Braun
  • Matthijn R Vos
  • Nir Kalisman
  • Nicholas E Sherman
  • Reinhard Rachel
  • Reinhard Wirth
  • Gunnar F Schröder
  • Edward H Egelman
چکیده

The bacterial flagellar apparatus, which involves ∼40 different proteins, has been a model system for understanding motility and chemotaxis. The bacterial flagellar filament, largely composed of a single protein, flagellin, has been a model for understanding protein assembly. This system has no homology to the eukaryotic flagellum, in which the filament alone, composed of a microtubule-based axoneme, contains more than 400 different proteins. The archaeal flagellar system is simpler still, in some cases having ∼13 different proteins with a single flagellar filament protein. The archaeal flagellar system has no homology to the bacterial one and must have arisen by convergent evolution. However, it has been understood that the N-terminal domain of the archaeal flagellin is a homolog of the N-terminal domain of bacterial type IV pilin, showing once again how proteins can be repurposed in evolution for different functions. Using cryo-EM, we have been able to generate a nearly complete atomic model for a flagellar-like filament of the archaeon Ignicoccus hospitalis from a reconstruction at ∼4-Å resolution. We can now show that the archaeal flagellar filament contains a β-sandwich, previously seen in the FlaF protein that forms the anchor for the archaeal flagellar filament. In contrast to the bacterial flagellar filament, where the outer globular domains make no contact with each other and are not necessary for either assembly or motility, the archaeal flagellin outer domains make extensive contacts with each other that largely determine the interesting mechanical properties of these filaments, allowing these filaments to flex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases.

Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins, are distinct in that their processing sites precede the hydrophobic domain, which is crucial for as...

متن کامل

Mass spectrometry unmasks mystery Methanococcus pilin.

In this issue, Ng and colleagues describe their outside-in identification of genes involved in the expression of unusual type IV pili in the archaeon Methanococcus maripaludis (13). This intriguing tale, like many in science, hints at chapters not yet written and contains a common theme...expected the unexpected. Prokaryotes, both bacteria and archaea, express a variety of pili, fimbriae, flage...

متن کامل

Pilin Processing Follows a Different Temporal Route than That of Archaellins in Methanococcus maripaludis

Methanococcus maripaludis has two different surface appendages: type IV-like pili and archaella. Both structures are believed to be assembled using a bacterial type IV pilus mechanism. Each structure is composed of multiple subunits, either pilins or archaellins. Both pilins and archaellins are made initially as preproteins with type IV pilin-like signal peptides, which must be removed by a pre...

متن کامل

Diversity and Evolution of Type IV pili Systems in Archaea

Many surface structures in archaea including various types of pili and the archaellum (archaeal flagellum) are homologous to bacterial type IV pili systems (T4P). The T4P consist of multiple proteins, often with poorly conserved sequences, complicating their identification in sequenced genomes. Here we report a comprehensive census of T4P encoded in archaeal genomes using sensitive methods for ...

متن کامل

The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds.

Cell-surface pili are important virulence factors that enable bacterial pathogens to adhere to specific host tissues and modulate host immune response. Relatively little is known about the structure of Gram-positive bacterial pili, which are built by the sortase-catalyzed covalent crosslinking of individual pilin proteins. Here we report the 1.6-A resolution crystal structure of the shaft pilin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 37  شماره 

صفحات  -

تاریخ انتشار 2016